首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   35篇
  国内免费   20篇
测绘学   8篇
大气科学   138篇
地球物理   191篇
地质学   364篇
海洋学   30篇
天文学   182篇
综合类   4篇
自然地理   24篇
  2021年   13篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   23篇
  2015年   27篇
  2014年   28篇
  2013年   43篇
  2012年   42篇
  2011年   42篇
  2010年   34篇
  2009年   40篇
  2008年   47篇
  2007年   33篇
  2006年   33篇
  2005年   39篇
  2004年   33篇
  2003年   23篇
  2002年   28篇
  2001年   21篇
  2000年   23篇
  1999年   20篇
  1998年   18篇
  1997年   7篇
  1996年   14篇
  1995年   11篇
  1994年   14篇
  1993年   10篇
  1992年   8篇
  1991年   18篇
  1990年   8篇
  1989年   5篇
  1988年   10篇
  1987年   7篇
  1986年   6篇
  1985年   6篇
  1984年   11篇
  1983年   13篇
  1981年   16篇
  1980年   12篇
  1979年   6篇
  1978年   12篇
  1977年   8篇
  1976年   13篇
  1975年   7篇
  1974年   6篇
  1973年   11篇
  1972年   6篇
  1960年   4篇
排序方式: 共有941条查询结果,搜索用时 484 毫秒
21.
The effect of dissolved barium on biogeochemical processes at cold seeps   总被引:2,自引:0,他引:2  
A numerical model was applied to investigate and quantify the biogeochemical processes fueled by the expulsion of barium and methane-rich fluids in the sediments of a giant cold-seep area in the Derugin Basin (Sea of Okhotsk). Geochemical profiles of dissolved Ba2+, Sr2+, Ca2+, SO42−, HS, DIC, I and of calcium carbonate (CaCO3) were fitted numerically to constrain the transport processes and the kinetics of biogeochemical reactions. The model results indicate that the anaerobic oxidation of methane (AOM) is the major process proceeding at a depth-integrated rate of 4.9 μmol cm−2 a−1, followed by calcium carbonate and strontian barite precipitation/dissolution processes having a total depth-integrated rate of 2.1 μmol cm−2 a−1. At the low seepage rate prevailing at our study site (0.14 cm a−1) all of the rising barium is consumed by precipitation of barite in the sedimentary column and no benthic barium flux is produced. Numerical experiments were run to investigate the response of this diagenetic environment to variations of hydrological and biogeochemical conditions. Our results show that relatively low rates of fluid flow (<∼5 cm a−1) promote the dispersed precipitation of up to 26 wt% of barite and calcium carbonate throughout the uppermost few meters of the sedimentary column. Distinct and persistent events (several hundreds of years long) of more vigorous fluid flow (from 20-110 cm a−1), instead, result in the formation of barite-carbonate crusts near the sediment surface. Competition between barium and methane for sulfate controls the mineralogy of these sediment precipitates such that at low dissolved methane/barium ratios (<4-11) barite precipitation dominates, while at higher methane/barium ratios sulfate availability is limited by AOM and calcium carbonate prevails. When seepage rates exceed 110 cm a−1, barite precipitation occurs at the seafloor and is so rapid that barite chimneys form in the water column. In the Derugin Basin, spectacular barite constructions up to 20 m high, which cover an area of roughly 22 km2 and contain in excess of 5 million tons of barite, are built through this process. In these conditions, our model calculates a flux of barium to the water column of at least 20 μmol cm−2 a−1. We estimate that a minimum of 0.44 × 106 mol a−1 are added to the bottom waters of the Derugin Basin by cold seep processes, likely affecting the barium cycle in the Sea of Okhotsk.  相似文献   
22.
Polymict ureilites DaG 164/165, DaG 319, DaG 665, and EET 83309 are regolith breccias composed mainly of monomict ureilite-like material, but containing ∼2 vol% of feldspathic components. We characterized 171 feldspathic clasts in these meteorites in terms of texture, mineralogy, and mineral compositions. Based on this characterization we identified three populations of clasts, each of which appears to represent a common igneous (generally basaltic) lithology and whose mafic minerals show a normal igneous fractionation trend of near-constant Fe/Mn ratio over a range of Fe/Mg ratios that extend to much higher values than those in monomict ureilites. The melts represented by these populations are unlikely to be impact melts, because the ubiquitous presence of carbon in polymict ureilites (the regolith of the ureilite parent body) implies that impact melts would have crystallized under conditions of carbon redox control and therefore have highly magnesian mafic mineral compositions with constant Mn/Mg ratio. Therefore, these melts appear to be indigenous products of igneous differentiation on the ureilite parent body (UPB), complementary to the olivine-pigeonite residues represented by the majority of monomict ureilites.The most abundant population is characterized by albitic plagioclase in association with pyroxenes, phosphates, ilmenite, silica, and incompatible-element enriched glass. Model calculations suggest that it formed by extensive fractional crystallization of the earliest melt(s) of precursor materials from which the most magnesian (shallowest) olivine-pigeonite ureilites formed. A less abundant population, characterized by labradoritic plagioclase, may have formed from melts complementary to more ferroan olivine-pigeonite ureilites, and derived from deeper in the UPB. The third population, characterized by the presence of olivine and augite, could only have formed from melts produced at greater depths in the UPB than the olivine-pigeonite ureilites. Many other feldspathic clasts cannot be positively associated with any of these three populations, because their mafic mineral compositions exhibit carbon redox control. However, they may be products of early crystallization of basaltic melts produced on the UPB, before carbon was exhausted by reduction.Partial melting on the ureilite parent body was a fractional (or incremental) process. Melts were produced early in UPB history, and most likely extracted rapidly, thus preserving primitive chemical and oxygen isotopic signatures in the residues.  相似文献   
23.
24.
25.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
26.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
27.
28.
29.
30.
Understanding the degree of sea/saltwater intrusion in coastal regions is of great significance to treating the intrusion and improving the environment. Based on the character analysis of the sea/saltwater intrusion, five factors were selected in the fuzzy-synthetical evaluation approach to form the index system, so as to evaluate the degree of sea/saltwater intrusion in southern Laizhou Bay. The results show that the sea/saltwater intrusion is stronger in the middle and northern areas and weaker on the sides and in southern area; currently, the intrusion is relatively serious, and the intrusion area has covered about 68.2% of the areas under study, among which the heavily intruded area is over 50%. Based on the factors analysis of the occurrence and development of sea/saltwater intrusion, the thesis proposes treatment measures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号